If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=70
We move all terms to the left:
x^2+x-(70)=0
a = 1; b = 1; c = -70;
Δ = b2-4ac
Δ = 12-4·1·(-70)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{281}}{2*1}=\frac{-1-\sqrt{281}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{281}}{2*1}=\frac{-1+\sqrt{281}}{2} $
| -5=e/7-2 | | .25(24x+12)=6(x+0.5) | | 20x-3+11-1+151=180 | | -18w+3w=15 | | 17=s/4+4 | | 6−-n=10 | | 7x-35+2x=21 | | 18d+(-2d)=(-16) | | -8b2-3b+22=0 | | -1/3(6-9x)+4x=(-2x-8) | | x^2+x+70=180 | | 6(2n+10)=9(3n+8)+1 | | 6–-n=10 | | 12-6z=10-5z+7 | | 4.905t^2-5.785t+0.65=0 | | 10y+18=8y+4 | | 16-3b=13 | | -w/7=-57 | | 15p+6p-18p=12 | | (y-2)/((y+2)/2)=0.5 | | 40=8(j-95) | | 13r-11r=14 | | 16−3b=13 | | 8e+5=4e-11 | | 6v+7=-5(v-8) | | 0=x^2+46x-360 | | 17+6e=41 | | 9(2n+4)=8(5n+8)+9 | | -20y+3y-11y+17y=-11y | | 8q+5=6q+1 | | 20+5n=200 | | 4x/2-27/10=0 |